پروژه سوئیچینگ رگولاتور 75 وات

پروژه سوئیچینگ رگولاتور 75 وات


بخشی از متن اصلی:
فهرست مطالب :
فیلتر ها
دکو لاسیون و ولتاژ ripple
رگولاسیون ولتاژ ( voltage regulation)
ضریب اعوجاج سیگنال یکسو شده
یک فیلتر خازنی ساده
اعد جاج خازن فیلتر
فیلتر Rc
عملکرد dc قسمت Rc
عملکرد Ac قسمت Rc
مدار های چند برابر کننده ولتاژ
سه برابر کننده و چهار برابر کننده های ولتاژ
رگولاتور های ولتاژ Discret
رگولاتور های زنر و ترمیستو
Ic های رگولاتور ولتاژ
منابع تغذیه علمی
رگولاتورهای خطی، نیاکان رگولاتورهای switching
معایب منابع تغذیه خطی
یک رگلاتور ولتاژ مودری است که یک ولتاژ تقریبا” ثابت را به عنوان ورودی دریافت می کند و به عنوان خروجی ولتاژی پایین تر از ولتاژ اولیه تحویل می دهد که این ولتاژ خروجی در برابر محدوده مسیعی از تغییرات بار خروجی و یا ولتاژ ورودی ثابت می ماند و ب اصطلاح گوله شده است – البته در بعضی از انواع منابع تغذیه suntching ولتاژ خروجی حتی بالاتر از ولتاژ ورودی نیز هست . یک منبع تغذیه ولتاژ ac را از منبع تحویل می گیرد و آن را کویی کند و سپس با استفاده از متغیر مناسب ورودی IC رگو لاتور فراهم می شود و در خروجی ولتاژ گوله شده را خواهیم داشت .
Ic های رگولاتور ولتاژ در محدوده وسیعی از ولتاژهای خروجی موجود هستند . این Icها همچنین می توان برای هر ولتاژ خروجی دلخواه با انتخاب مقاومتهای خروجی مناسب بکار برد .
بلاگ دیاگرام یک منبع تغذیه معمولی در شکل نشان داده شده است . ولتاژ متناوب موجود (معمولا” 120v) به یک ترانسفورماتور متصل شده است که سطح ولتاژ را بالا یا پایین می آورد ( معمولا” در مدارها ولتاژهای پایین مورد نیاز است ) ولتاژ خروجی ترانسفورماتور به یک یکسو ساز نیم موج یا تمام موج ( عموما” تمام موج ) دیودی متصل است . خروجی یکسو ساز به یک فیلتر مناسب متصل است تا تغییرات و متاژاین ناجیه نرمتر شود . این ولتاژ که با ripple یا اعد جاج همراه است به عنان ورودی یک IC رگولاتور ولتاژ مورد استفاده قرار می گیرد خروجی این IC ها در برابر تغببرات وسیع جریان با اعد جاج معیار کم همراه است.

این فایل به همراه چکیده، فهرست، متن اصلی و منابع با فرمت doc ( قابل ویرایش ) در اختیار شما قرار می گیرد.
تعداد صفحات:45

تعداد مشاهده: 785 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: word

تعداد صفحات: 45

حجم فایل:82 کیلوبایت

 قیمت: 1,800 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


ارائه روش جدید جهت حذف نویز آکوستیکی در یک مجرا استفاده هم زمان از فیلترهای وفقی و شبکه های عصبی در

ارائه روش جدید جهت حذف نویز آکوستیکی در یک مجرا  استفاده هم زمان از فیلترهای وفقی و شبکه های عصبی در


تاکنون برای حذف نویزهای آکوستیکی از روش های فعال و غیر فعال استفاده شده است. برخلاف روش غیر فعال می‌توان بوسیله‌ی روش فعال، نویز را در فرکانس های پایین (زیر 500 هرتز)، حذف و یا کاهش داد. در روش فعال از سیستمی استفاده می شود که شامل یک فیلتر وفقی است. به دلیل ردیابی خوب فیلتر LMS در محیط نویزی، الگوریتم FXLMS بعنوان روشی پایه ارائه شده است. اشکال الگوریتم مذکور این است که در مسائل کنترل خطی استفاده می شود. یعنی اگر فرکانس نویز متغیر باشد و یا سیستم کنترلی بصورت غیرخطی کار کند، الگوریتم فوق به خوبی کار نکرده و یا واگرا می شود.
بنابراین در این پایان نامه، ابتدا به ارائه ی گونه ای از الگوریتم FXLMS می پردازیم که قابلیت حذف نویز، با فرکانس متغیر، در یک مجرا و در کوتاه‌ترین زمان ممکن را دارد. برای دستیابی به آن می توان از یک گام حرکت وفقی بهینه ( ) در الگوریتم FXLMS استفاده کرد. به این منظور محدوده ی گام حرکت بهینه در فرکانس های 200 تا 500 هرتز را در داخل یک مجرا محاسبه کرده تا گام حرکت بهینه بر حسب فرکانس ورودی به صورت یک منحنی اسپلاین مدل شود. حال با تخمین فرکانس سیگنال ورودی به صورت یک منحنی اسپلاین مدل شود. حال با تخمین فرکانس سیگنال ورودی بوسیله ی الگوریتم MUSIC ، را از روی منحنی برازش شده، بدست آورده و آن را در الگوریتم FXLMS قرار می‌دهیم تا همگرایی سیستم در کوتاه‌ترین زمان، ممکن شود. در نهایت خواهیم دید که الگوریتم FXLMS معمولی با گام ثابت با تغییر فرکانس واگرا شده حال آنکه روش ارائه شده در این پایان نامه قابلیت ردگیری نویز با فرکانس متغیر را فراهم می آورد.
همچنین‌به دلیل‌ماهیت غیرخطی سیستم‌های‌ANC ، به ارائه‌ی نوعی شبکه‌ی عصبی‌ RBF TDNGRBF ) ( می‌پردازیم که توانایی مدل کردن رفتار غیرخطی را خواهد داشت. سپس از آن در حذف نویز باند باریک فرکانس متغیر در یک مجرا استفاده کرده و نتایج آن را با الگوریتم FXLMS مقایسه می کنیم. خواهیم دید که روش ارائه شده در مقایسه با الگوریتم FXLMS، با وجود عدم نیاز به تخمین مسیر ثانویه، دارای سرعت همگرایی بالاتر (3 برابر) و خطای کمتری (30% کاهش خطا) است. برای حذف فعال نویز به روش TDNGRBF، ابتدا با یک شبکه ی GRBF به شناسایی مجرا می‌پردازیم. سپس با اعمال N تاخیر زمانی از سیگنال ورودی به N شبکه ی GRBF (با ترکیب خطی در خروجی آنها)، شناسایی سیستم غیرخطی بصورت بر خط امکان پذیر می شود. ضرایب بکار رفته در ترکیب خطی با استفاده از الگوریتم NLMS بهینه می شوند.

فهرست مطالب
عنوان صفحه
چکیده
فصل صفر: مقدمه
1
2
فصل اول: مقدمه ای بر کنترل نویز آکوستیکی 7
1-1) مقدمه 8
1-2) علل نیاز به کنترل نویزهای صوتی (فعال و غیر فعال) 9
1-2-1) بیماری های جسمی 9
1-2-2) بیماری های روانی 9
1-2-3) راندمان و کارایی افراد 9
1-2-4) فرسودگی 9
1-2-5) آسایش و راحتی 9
1-2-6 جنبه های اقتصادی 10
1-3) نقاط ضعف کنترل نویز به روش غیرفعال 10
1-3-1) کارایی کم در فرکانس های پایین 10
1-3-2) حجم زیاد عایق های صوتی 10
1-3-3) گران بودن عایق های صوتی 10
1-3-4) محدودیت های اجرایی 10
1-3-5) محدودیت های مکانیکی 10
1-4) نقاط قوت کنترل نویز به روش فعال 11
1-4-1) قابلیت حذف نویز در یک گسترده ی فرکانسی وسیع 11
1-4-2) قابلیت خود تنظیمی سیستم 11
1-5) کاربرد ANC در گوشی فعال 11
1-5-1) تضعیف صدا به روش غیر فعال در هدفون 12
1-5-2) تضعیف صدا به روش آنالوگ در هدفون 13
1-5-3) تضعیف صوت به روش دیجیتال در هدفون 15
1-5-4) تضعیف صوت به وسیله ی ترکیب سیستم های آنالوگ و دیجیتال در هدفون 16
1-6) نتیجه گیری 17

فصل دوم: اصول فیلترهای وفقی
18
2-1) مقدمه 19
2-2) فیلتر وفقی 20
2-2-1) محیط های کاربردی فیلترهای وفقی 22
2-3) الگوریتم های وفقی 25
2-4) روش تحلیلی 25
2-4-1) تابع عملکرد سیستم وفقی 26
2-4-2) گرادیان یا مقادیر بهینه بردار وزن 28
2-4-3) مفهوم بردارها و مقادیر مشخصه R روی سطح عملکرد خطا 30
2-4-4) شرط همگرا شدن به٭ W 32
2-5) روش جستجو 32
2-5-1) الگوریتم جستجوی گردایان 32
2-5-2) پایداری و نرخ همگرایی الگوریتم 35
2-5-3) منحنی یادگیری 36
2-6) MSE اضافی 36
2-7) عدم تنظیم 37
2-8) ثابت زمانی 37
2-9) الگوریتم LMS 38
2-9-1) همگرایی الگوریتم LMS 39
2-10) الگوریتم های LMS اصلاح شده 40
2-10-1) الگوریتم LMS نرمالیزه شده (NLMS) 41
2-10-2) الگوریتم های وو LMS علامتدار وو (SLMS) 41
2-11) نتیجه گیری 43

فصل سوم: اصول کنترل فعال نویز
44
3-1) مقدمه 45
3-2) انواع سیستم های کنترل نویز آکوستیکی 45
3-3) معرفی سیستم حذف فعال نویز تک کاناله 47
3-4) کنترل فعال نویز به روش پیشخور 48
3-4-1) سیستم ANC پیشخور باند پهن تک کاناله 49
3-4-2) سیستم ANC پیشخور باند باریک تک کاناله 50
3-5) سیستم های ANC پسخوردار تک کاناله 51
3-6) سیستم های ANC چند کاناله 52
3-7) الگوریتم هایی برای سیستم های ANC پسخوردار باند پهن 53
3-7-1) اثرات مسیر ثانویه 54
3-7-2) الگوریتم FXLMS 57
3-7-3) اثرات فیدبک آکوستیکی 61
3-7-4) الگوریتم Filtered- URLMS 66
3-8) الگوریتم های سیستم ANC پسخوردار تک کاناله 69
3-9) نکاتی درباره ی طراحی سیستم های ANC تک کاناله 70
3-9-1) نرخ نمونه برداری و درجه ی فیلتر 72
3-9-2) علیت سیستم 73
3-10) نتیجه گیری 74

فصل چهارم: شبیه سازی سیستم ANC تک کاناله
75
4-1) مقدمه 76
4-2) اجرای الگوریتم FXLMS 76
4-2-1) حذف نویز باند باریک فرکانس ثابت 76
4-2-2) حذف نویز باند باریک فرکانس متغیر 81
4-3) اجرای الگوریتم FBFXLMS 83
4-4) نتیجه گیری 85

فصل پنجم: کنترل غیرخطی نویز آکوستیکی در یک ماجرا
86
5-1) مقدمه 87
5-2) شبکه عصبی RBF 88
5-2-1) الگوریتم آموزشی در شبکه ی عصبی RBF 90
5-2-2) شبکه عصبی GRBF 93
5-3) شبکه ی TDNGRBF 94
5-4) استفاده از شبکه ی TDNGRBF در حذف فعال نویز 95
5-5) نتیجه گیری 98

فصل ششم: نتیجه گیری و پیشنهادات
99
6-1) نتیجه گیری 100
6-2) پیشنهادات 101
مراجع I


تعداد مشاهده: 11 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: doc

تعداد صفحات: 264

حجم فایل:7,415 کیلوبایت

 قیمت: 18,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی: